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Euclidian response of light nuclei
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Abstract. We discuss the longitudinal and transverse quasi-elastic cross-sections for 3He and 4He in terms
of the Euclidian response, which can be directly calculated from the ground-state wave function. We find
that the main open problem in quasi-elastic scattering, the excess of transverse strength, can be understood
as a consequence of meson exchange currents, once the n-p short-range and tensor correlations in both
initial and final state are included.

PACS. 21.10.-k Properties of nuclei; nuclear energy levels – 25.30.-c Lepton-induced reactions

1 Introduction

Inclusive quasi-elastic electron-nucleus scattering has a
number of interesting facets relating to properties of
the nuclear spectral function (Fermi momenta, high-
momentum components), the role of final-state interac-
tions, y-, ψ- and ξ-scaling, superscaling, enhancement of
the response in the “dip” region between quasi-elastic and
∆ peak. Here, we want to focus on a different aspect: the
integrated strength of the longitudinal and transverse re-
sponses and the role played by meson exchange currents.

The response functions RL and RT at constant
3-momentum transfer q are defined by
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the R’s are obtained from a straight-line fit
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In the past, much attention has been devoted to the
Coulomb sum rule

RL(q, ω) =
∑
f �=0

〈
f |ρ(q)|0〉2

δ(ω + E0 −Ef )
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which, under simplifying assumptions, should yield

CL(q) =
∫ ∞

ω+

RL(q, ω)dω = ZG̃ep +NG̃en.

These assumptions comprise: 1) q has to be big enough
to eliminate Pauli blocking (q should be significantly big-
ger than 2kF); 2) the contribution of elastic scattering is
small; 3) meson exchange currents (MEC) are negligible;
4) relativistic effects are covered by the use of G̃; 5) the
scattered electron can be described by plane waves, and
6) the integral extends to ω = ∞. While assumptions 2)
and 4) are safe, the other assumptions are not fulfilled and
need calculated corrections.

In the past, the analysis of quasi-elastic data taken at
Bates and Saclay seemed to yield a Coulomb sum that
amounted to 60% of the expected one only [1]. The care-
ful work of J. Jourdan [2] showed that this lack of strength
was due to a number of omissions and errors: use of the
wrong nucleon form factor (dipole instead of the exper-
imentally known one), neglect of Coulomb corrections,
omission of the relativistic corrections, lack of correction
for finite ωmax, all of which go in the same direction. When
doing things properly, the Coulomb sum rule for the data
of [1] is fulfilled within the experimental uncertainty of
20%. When adding to the data the cross-sections taken at
SLAC —which are much more sensitive to RL as they are
taken at very small angle— one finds that the Coulomb
sum is fulfilled for A = 12, 40, 56 (where enough data are
available) within the experimental uncertainty of 10%.

This apparent problem with the Coulomb sum has de-
flected attention from the real problem, the fact that the
transverse strength is too large. While it has been long
known that there is an excess in the transverse strength
in the “dip”, the work on superscaling [3] emphasized in
the most clear way that already in the main quasi-elastic
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Fig. 1. Ratios of T and L strength integrated over two different
regions of the quasi-elastic peak (centered at ψ = 0).

peak —below pion production threshold— RT is much too
large. This fact is best demonstrated by plotting the ratio
CT /CL which, in the limit of the impulse approximation,
should be roughly = 1 (neglecting the small convection
current contribution to RT ). As shown by fig. 1 a signif-
icant excess of the transverse strength is observed. This
excess is particularly pronounced for A = 3, 4.

This excess is not understood. A large number of cal-
culations of MEC have been performed [4–17], but they
in general find very small (≤ 10%) contributions, with the
exception of [13], who use medium-modified ∆ properties
adjusted to other MEC-sensitive quantities.

As mentioned above, the excess is particularly large for
A = 4, and doubles between A = 3 and 4. For these nuclei
very accurate experimental R’s can be determined, and
much more quantitative theoretical calculations can be
performed. We, therefore, in the following want to pursue
this question of the role of MEC for the helium nuclei.

2 Experimental response

In order to determine the longitudinal (L) and transverse
(T ) responses, the (e, e′) world data on 3He and 4He have
been analyzed [18]. A determination of the response func-
tions from the world cross-section data [19–27] has many
advantages over the traditional approach of using data
from a single experiment only; the range in ε is much
larger, thus allowing a more accurate separation of L and
T . Particularly, for medium-A nuclei the limitations of
the traditional approach were partly responsible for the
misleading conclusions mentioned in the introduction and
discussed in [2].

This separation has been done for values of q between
300 and 700 MeV/c. In fig. 2 we show as an example the
L and T response (already divided by the proton charge
form factor) for q = 600 MeV/c. While the longitudinal
response approaches zero at large energy loss, the trans-
verse response displays a rise due to the ∆ which increases
with increasing q.

Fig. 2. T (�) and L (�) response of 3He (top) and 4He at
q = 600 MeV/c, already divided by the proton charge form
factor. Crosses indicate the ωmax used.

3 Euclidian response

A quantitative treatment of (e, e′) requires a precise de-
scription of both the initial bound and the final continuum
state. The latter is not available for A > 3. As an alterna-
tive, we study an integral over the response

ẼT,L(q, τ) =
∫ ∞

ωth

exp[−ωτ ] RT,L(q, ω) dω .

Here, E0 is the ground-state energy of the nucleus, and ωth

is the threshold for the response of the system excluding
the elastic contribution. The longitudinal and transverse
Euclidean response functions represent weighted sums of
the corresponding RL(q, ω) and RT (q, ω): at τ = 0 they
correspond to the Coulomb and transverse sum rules, re-
spectively, while their derivatives with respect to τ eval-
uated at τ = 0 correspond to the energy-weighted sum
rules. Larger values of τ correspond to integrals over pro-
gressively lower-energy regions of the response.
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Fig. 3. Various modifications of the “normal” response (top)
and the corresponding ratio to the unmodified Euclidian re-
sponse (bottom).

In a non-relativistic picture, the ET,L can be simply
obtained from:

ẼL(q, τ) = 〈0|ρ†(q) exp[−(H − E0)τ ]ρ(q)|0〉
− exp

(
− q2τ

2Am

)
|〈0(q)|ρ(q)|0〉|2,

and similarly for ẼT (q, τ), with the charge operator ρ(q)
replaced by the current operator jT (q). The elastic con-
tributions have been explicitly subtracted, and |0(q)〉 rep-
resents the ground state recoiling with momentum q.

The study of the Euclidian response has the outstand-
ing advantage that E(q, τ) can be calculated from the
ground-state properties alone; no explicit treatment of the
final continuum state is required. For the A = 3, 4 ground
states, very precise wave functions are available, and the
effects of MEC can be included using the two-body op-
erators well established in elastic and inelastic electron
scattering from light nuclei (for a review see [28]).

The Euclidian response has the disadvantage that we
usually lack a good feeling for this integrated quantity.
Model studies [18] show the sensitivity of E(q, τ) to prop-
erties of R(q, ω), see fig. 3. The top panel shows various

modifications of the “normal” response, the bottom panel
shows the effect upon the ratios of the resulting Euclidian
responses to the “normal” one. These studies show that,
for the responses that can be extracted from the data,
the region 0.01 ≤ τ ≤ 0.05 is the most relevant one for a
comparison with theory.

The ground-state wave functions used in this study are
obtained with variational Monte Carlo [18]. The Hamilto-
nian used is the Argonne v8 N-N interaction plus the UIX
three-nucleon interaction.

The one-body electromagnetic operators have the
standard expressions obtained from a relativistic reduc-
tion of the covariant single-nucleon current. The two-body
current operator consists of “model-independent”and
“model-dependent” components, in the classification
scheme of Riska [29]. The model-independent terms are
obtained [30] from the nucleon-nucleon interaction. For
the model-dependent pieces, the calculation includes the
isoscalar ρπγ and isovector ωπγ transition currents as well
as the isovector current associated with excitation of in-
termediate ∆-isobar resonances. The model for the two-
body charge operators is the one of ref. [30] and includes
the π-, ρ-, and ω-meson exchange charge operators with
both isoscalar and isovector components, the (isoscalar)
ρπγ and (isovector) ωπγ charge transition couplings and
the single-nucleon Darwin-Foldy and spin-orbit relativis-
tic corrections.

4 Results

In fig. 4 we show representative results for the transverse
response at q = 600 MeV/c. The comparison between cal-
culation and experiment shows good agreement in the re-
gion of τ , where a significant comparison can be made (as
pointed out above, the region τ < 0.01 should be ignored
for the case of the transverse response, because it is too
sensitive to the tail of the ∆, which was cut away by a
finite upper integration limit in ω, see fig. 2).

In particular,

– the large enhancement of the transverse strength due
to MEC is correctly predicted,

– the doubling of the transverse excess between A = 3
and 4 is reproduced,

– the q-dependence of the transverse excess is correctly
accounted for (not shown), and

– the calculation also gives a (small, but non-negligible)
reduction of the longitudinal strength due to MEC.

Particularly remarkable is the fact that the large excess
of the transverse strength is explained by the calculated
MEC. Nearly all past calculations of MEC for (e, e′) gave
quite small contributions in the region of the quasi-elastic
peak. When studying the origin of this difference, one finds
that MEC give large contributions only when the n-p ten-
sor and short-range correlations in both the initial and
the final state are included in the calculation (see also [8,
15]). This in most past calculations has not been possible:
typically independent-particle wave functions have been
used for the initial state, and the final-state interaction (if
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Fig. 4. Transverse Euclidian response for 3He (top) and 4He
at 600 MeV/c. Data (+), IA (◦) and full calculation (×).

included at all) has been described using an optical po-
tential. The reason for the lack of success of past MEC
calculations thus has been elucidated.

5 Sum rules

Sum rules provide a useful tool for the study of integral
properties of the response of the nuclear many-body sys-
tem to the electromagnetic probe. Of particular interest
are the ones involving the longitudinal and transverse re-
sponse functions at constant three-momentum transfer.
They can be expressed as ground-state expectation values
of the charge and current operators and do not require
knowledge of the complicated structure of the nuclear ex-
citation spectrum. These τ = 0 values can more easily
(and for more nuclei) be calculated than E(q, τ).

The sum rules are defined as

Sα(q) = Cα

∫ ∞

ω+
th

dω Sα(q, ω)

= Cα

[
〈0|O†

α(q)Oα(q)|0〉 − |〈0|Oα(q)|0〉|2
]

,

Table 1. The transverse sum rule obtained with one-body
only and both one- and two-body current operators.

3He 4He 6Li

1 1+2 1 1+2 1 1+2

1.01 1.25 1.01 1.49 1.01 1.41

Table 2. The longitudinal sum rule obtained with one-body
only and both one- and two-body charge operators.

3He 4He 6Li

1 1+2 1 1+2 1 1+2

0.982 0.908 0.973 0.910 0.990 0.924

Table 3. The 4He transverse sum rule: contribution of pp and
nn pairs.

1 1+2 1+2; pp or nn only

1.01 1.47 1.03

where Sα(q, ω) is the point-nucleon longitudinal (α = L)
or transverse (α = T ) response function, Oα(q) is either
the charge ρ(q) or current j(q) operator divided by the
square of the proton form factor |Gp

E(Q̃
2)|2 (Q̃2 is eval-

uated at the energy transfer corresponding to the quasi-
elastic peak), |0〉 denotes the ground state, and the elastic
contribution to the sum has been removed. The constants
C amount to CL = 1/Z, CT = 2m2/(Zµ2

p +Nµ2
n)q

2.
These sums have been calculated [18] for A = 3, 4,

6 using the full v18 interaction and the MEC discussed
above. We here only quote some selected results that let
us better understand the agreement between experiment
and theory found above.

We first show in table 1, for q = 600 MeV/c, the nu-
merical effect of MEC on the transverse strength. The
transverse excess is large, increases between A = 3 and 4
and only gradually becomes smaller for A = 6.

As shown by table 2 MEC and relativistic correc-
tions have also a considerable effect on the longitudinal
strength; much of the reduction is due to the Darwin-
Foldy term.

When repeating the calculation of the two-body effects
with simplified operators, one also finds that the most im-
portant two-body current contributions are those associ-
ated with the PS (pion-like) and ∆ excitation currents.

Moreover, the transverse strength associated with two-
body currents is almost entirely due to pn pairs. When
only keeping the n-n and p-p correlations, the enhance-
ment in the transverse strength is very small, as shown
by table 3, again for q = 600 MeV/c. This shows that the
enhancement of the transverse response due to MEC is
not due to the particular MEC operators used, but is a
consequence of the quantitative treatment of the initial-
and final-state wave function.
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Table 4. Excess strength contributions to the Fermi-gas sum
rules from terms involving two-nucleon currents.

∆SL ∆ST

0.017 0.060

Lastly, we show in table 4 the amount of excess
strength due to MEC obtained when removing in the
ground state all correlations, i.e. when using a Fermi gas.
This corresponds to what has been done in most calcu-
lations of MEC in the literature [4–17]. Table 4 (again
for q = 600 MeV/c) largely explains why most previous
calculations have found much too small a transverse en-
hancement.

6 Conclusions

We have discussed the understanding of the separated re-
sponse functions as measured in inclusive electron-nucleus
scattering in the region of the quasi-elastic peak. Much of
the discussion of the past had been focused, without good
reason as more careful work has shown, on the longitudi-
nal strength (the Coulomb sum rule). The main question
not understood, the strong enhancement of the transverse
strength in the main quasi-elastic peak region, remained
open.

A priori it is clear that the transverse response can
get appreciable contributions from meson exchange cur-
rents. Actual calculations, however, produced MEC con-
tributions that were far too small. The work discussed in
this paper focuses on the transverse strength for 4He, the
nucleus where this transverse excess strength is maximal.

It turns out that this excess can be understood once
one uses a theoretical approach that does treat the short-
range and tensor n-p correlations in both the initial and fi-
nal (continuum) state. This can be achieved for A = 3, 4, 6
as variational Monte Carlo calculations using modern N-N
interactions can be performed for the bound states. By
studying the Euclidian response (rather than the response
as a function of electron energy loss) one can get around
the difficulty of a similarly quantitative calculation for the
continuum state: the Euclidian response can directly be
calculated starting from the ground-state wave function.

The comparison of experimental and calculated re-
sponse functions shows that both the pronounced en-
hancement of the transverse strength and the smaller re-
duction of the longitudinal strength (the Coulomb sum)
are due to MEC and can quantitatively be understood.

Much of the work described in this paper was done in collab-
oration with Joe Carlson, Jürg Jourdan and Rocco Schiavilla.
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